MATH5010 Linear Analysis (2020-21): Homework 5. Deadline: 1 Mar 2021

Important Notice:

♣ The answer paper must be submitted before the deadline.

 \blacklozenge The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.

- 1. For each positive integer n, define a linear functional $\delta_n : c_0 \to \mathbb{K}$ by $\delta_n(x) := x(n)$ for $x \in c_0$.
 - (i) Show that $\delta_n \in c_0^*$ and find $\|\delta_n\|$.
 - (ii) Show that $\lim_{n \to \infty} \delta_n(x) = 0$ for all $x \in c_0$ but $\delta_n \not\to 0$ in c_0^* .
- 2. Let X := C[-1, 1] be the space of all real-valued continuous functions defined on [-1, 1]. Suppose that X is endowed with the $\|\cdot\|_{\infty}$ -norm, that is $\|f\|_{\infty} := \sup\{|f(x)| : x \in [-1, 1]\}$. Define a linear functional φ on X by

$$\varphi(f) := \int_0^1 f(x) dx - \int_{-1}^0 f(x) dx$$

for $f \in X$. Show that $\varphi \in X^*$ and find $\|\varphi\|$.